Improved estimation of anomalous diffusion exponents in single-particle tracking experiments.

نویسندگان

  • Eldad Kepten
  • Irena Bronshtein
  • Yuval Garini
چکیده

The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach

Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model ...

متن کامل

Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments

Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical ...

متن کامل

Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents.

A number of results for reactions involving subdiffusive species, all with the same anomalous exponent , have recently appeared in the literature and can often be understood in terms of a subordination principle whereby time in ordinary diffusion is replaced by tgamma. However, very few results are known for reactions involving different species characterized by different anomalous diffusion ex...

متن کامل

Apparent subdiffusion inherent to single particle tracking.

Subdiffusion and its causes in both in vivo and in vitro lipid membranes have become the focus of recent research. We report apparent subdiffusion, observed via single particle tracking (SPT), in a homogeneous system that only allows normal diffusion (a DMPC monolayer in the fluid state). The apparent subdiffusion arises from slight errors in finding the actual particle position due to noise in...

متن کامل

Motion in Cell Membranes, General Random Walks and Anomalous Diffusion

Cell membranes display a range of receptors that bind signaling molecules and initiate transmembrane responses. Strict spatial and temporal regulation of signal transduction from the cell membrane to the cytoplasm and nucleus is crucial for cell survival, differentiation, proliferation and other activities. Single particle tracking experiments provide detailed data on the motion of membrane mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013